Vibration and Noise Reduction Optimization Design of Mine Chute with Foam Aluminum Laminated Structure
نویسندگان
چکیده مقاله:
The mining chute is an important equipment in the process of coal transportation and coal screening preparation. During the working process, the mining chute will generate a lot of vibration and noise because of constantly friction and impact of gangue and coal blocks. In order to reduce the vibration and noise during the operation of the chute, a new type of foam aluminum laminated structure is used to manufacture the mining chute. According to the characteristic of chute, the laminated structure is optimization designed by taking the vibration amplitude as the objective function, the thickness of the steel plate and the foam aluminum core plate as the design variables. And then, the vibration and noise reduction performance of two type chutes are carried out by using experiment and finite element simulation method. The results show that the using of foam aluminum laminate structure to manufacture the chute can obviously increase the damping ratio of the system, which can effectively reduce the vibration amplitude of the chute. And the average sound insulation performance of foam aluminum laminated chute is better than prototype chute, especially in the middle and high frequency section, which can be reduced by about 7.1 dB on average comparison with prototype chute. So, it can be seen that the foam aluminum laminated structure chute has a more significant sound insulation and vibration reduction effect than the prototype chute.
منابع مشابه
Multi-objective Crashworthiness Optimization of the Aluminum Foam-filled Tubes
In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimization of the automotive energy absorbing components. In this paper, axial impact crushing behavior of the aluminum foam-filled thin-walled tubes are studied by the finite element method using commercial software ABAQUS. Comparison of the...
متن کاملSMART FOAM FOR ACTIVE VIBRATION AND NOISE CONTROL by
Title of Dissertation: SMART FOAM FOR ACTIVE VIBRATION AND NOISE CONTROL Wael Nabil Akl, Doctor of Philosophy, 2004 Dissertation Directed By: Professor Amr M. Baz Department Mechanical Engineering A new class of smart foams is introduced to simultaneously control the vibration and noise radiation from flexible plates coupled with acoustic cavities. The proposed smart foam consists of a passive ...
متن کاملsemi-analytical solution for static and forced vibration problems of laminated beams through smooth fundamental functions method
در این پایان نامه روش جدیدی مبتنی بر روش حل معادلات دیفرانسیل پارهای بر اساس روش توابع پایه برای حل مسایل ارتعاش اجباری واستاتیک تیرها و صفحات لایه ای ارایه شده است که می توان تفاوت این روش با روش های متداول توابع پایه را در استفاده از توابع هموار در ارضاء معادلات حاکم و شرایط مرزی دانست. در روش ارایه شده در این پایاننامه از معادله تعادل به عنوان معادله حاکم بر رفتار سیستم استفاده شده است که مو...
15 صفحه اولmulti-objective crashworthiness optimization of the aluminum foam-filled tubes
in order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimization of the automotive energy absorbing components. in this paper, axial impact crushing behavior of the aluminum foam-filled thin-walled tubes are studied by the finite element method using commercial software abaqus. comparison of the...
متن کاملDesign Optimization of Switched Reluctance Motor for Noise Reduction
Article history: Received: 5.1.2016. Received in revised form: 15.3.2016. Accepted: 15.3.2016. With finite element method (FEM) using ANSYS finite element (FE) package, an electromagneticstructural simulation model is introduced for the switched reluctance motor (SRM). Since the main reason of noise and vibration in the SRM is a radial force applied to stator poles, the 2D FE transient analysis...
متن کاملA Structure Design Method for Reduction of MRI Acoustic Noise
The acoustic problem of the split gradient coil is one challenge in a Magnetic Resonance Imaging and Linear Accelerator (MRI-LINAC) system. In this paper, we aimed to develop a scheme to reduce the acoustic noise of the split gradient coil. First, a split gradient assembly with an asymmetric configuration was designed to avoid vibration in same resonant modes for the two assembly cylinders. Nex...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 33 شماره 8
صفحات 1668- 1676
تاریخ انتشار 2020-08-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023